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Abstract

Background

The composition and structure of microbial communities that inhabit the mosquito midguts

are poorly understood despite their well-documented potential to impede pathogen trans-

mission.

Methodology/Principal findings

We used MiSeq sequencing of the 16S rRNA gene to characterize the bacterial communities

of field-collected populations of 12 mosquito species. After quality filtering and rarefaction,

the remaining sequences were assigned to 181 operational taxonomic units (OTUs). Approx-

imately 58% of these OTUs occurred in at least two mosquito species but only three OTUs:

Gluconobacter (OTU 1), Propionibacterium (OTU 9), and Staphylococcus (OTU 31) occurred

in all 12 mosquito species. Individuals of different mosquito species shared similar gut micro-

biota and it was common for individuals of the same species from the same study site and

collection date to harbor different gut microbiota. On average, the microbiota of Aedes albo-

pictus was the least diverse and significantly less even compared to Anopheles crucians, An.

quadrimaculatus, Ae. triseriatus, Ae. vexans, Ae. japonicus, Culex restuans, and Culiseta

inornata. The microbial community of Cx. pipiens and Ae. albopictus differed significantly

from all other mosquitoes species and was primarily driven by the dominance of Wolbachia.

Conclusion and significance

These findings expand the range of mosquito species whose gut microbiota has been char-

acterized and sets the foundation for further studies to determine the influence of these

microbiota on vector susceptibility to pathogens.

Author summary

The microbial communities that reside in mosquito midguts can impact transmission of

mosquito-borne pathogens. We used high throughput next generation sequencing to
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characterize the midgut microbial communities of 12 mosquito species collected in urban

residential areas in Champaign County, Illinois. A total of 181 OTUs from 11 phyla and 66

families were identified. Although several bacterial taxa were shared between two or more

mosquito species, there was remarkable individual differences in gut microbiota and it was

common for individuals of different mosquito species to harbor similar gut microbiota. The

microbiota of Ae. albopictus was the least diverse and significantly less evenly distributed

compared to 7 of 11 mosquito species. The microbial community of Cx. pipiens and Ae. albo-
pictus differed significantly from other mosquito species and was primarily dominated by

Wolbachia. These findings improve current knowledge on the composition and structure of

mosquito gut microbiota and provide the framework for understanding their contribution

to individual variation in vector competence and potential application in disease control.

Introduction

Mosquitoes transmit a wide range of pathogens that cause diseases in humans and other ani-

mals. The majority of mosquito-borne pathogens were previously confined to small geo-

graphic regions in the tropics but have recently emerged as a worldwide threat to human and

animal health. Recent examples of mosquito-borne diseases that have caused major epidemics

outside their native geographic range include West Nile virus [1], dengue virus [2], Chikungu-

nya virus [3] and Zika virus [4, 5].

The transmission cycle of mosquito-borne pathogens involve interactions between at least

three species: the pathogen, the vector, and the vertebrate host. When the mosquito takes a

blood meal from an infected vertebrate host, the pathogen invades the midgut tissue where it

undergoes further development and/or replication and then disseminates to secondary tissues

such as nerve tissue, fat body, and finally the salivary glands [6]. At this point, the mosquito is

considered infectious and is capable of transmitting the pathogen during a subsequent blood

meal. However, the mosquito midgut is known to possess factors that may impede successful

transmission of the pathogen [7–10]. These factors include the mosquito innate immune sys-

tem and the digestive enzymes [6, 8, 11].

It is also well established that the mosquito midgut is colonized by a community of bacteria

that can affect vector susceptibility to pathogens e.g. [12, 13]. For example, certain bacterial iso-

lates from natural mosquito populations have been shown to reduce mosquito susceptibility to

Plasmodium and dengue infection [12, 14, 15]. These effects are exerted through activation of

the mosquito immune system [16], generation of reactive oxygen species by certain microbes

[15], and formation of a physical barrier to infection [17]. Likewise, modification of midgut

microbiota of Anopheles gambiae and Aedes aegypti through antibiotic treatment has been

shown to enhance susceptibility to Plasmodium [16] and dengue infection [18], respectively.

Other studies have shown that some midgut bacterial isolates can be genetically modified to

express molecules that impair pathogen development within the mosquito [19, 20]. Collectively,

these findings suggest that the composition of mosquito midgut microbiota likely contributes to

within- and between-species variation in vector competence that is typical of many (if not all)

mosquito-borne disease systems. Moreover, these studies demonstrate the potential for exploit-

ing microbial functions for symbiotic control of mosquito-borne diseases [21].

Over the last few decades numerous studies have used culture-dependent and culture-inde-

pendent approaches to characterize the microbial communities in the midguts of mosquito

populations. These studies have revealed that the composition and diversity of gut microbiota

can vary dramatically within [22] and between mosquito species [23] and are influenced by

Microbiota of wild mosquitoes

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005377 February 28, 2017 2 / 18



host diet [24], developmental stage [24], larval environment [25], and pathogen infection [26,

27]. As such, additional studies comparing the microbial communities of different mosquito

species can further improve our understanding of mosquito microbiota and propel identifica-

tion of specific microbes that may be harnessed for disease control.

In this study, we characterized the microbiota of 12 mosquito species collected from Cham-

paign County, Illinois. The aim of this study was to determine how gut microbial diversity, com-

position and structure differs between mosquito species. Overall, we observed some remarkable

similarities in gut microbiota between individuals of different mosquito species that were domi-

nated by one or two bacterial taxa. These bacterial communities tended to vary markedly

between individuals. We also found significant differences in bacterial community structure

between some mosquito species. These findings advance current knowledge on the microbial

communities that reside in mosquito midguts and provide the foundation for investigating their

role in mosquito biology and potential application in mosquito-borne disease control.

Materials and methods

Mosquito collection

Mosquito samples for this study were collected once per week (July 2, 2015 to October 15,

2015) outside 19 urban residential houses in Champaign County, Illinois with permission

from property owners (Fig 1). The sites were located within a 10 km radius of each other. The

collections were done using standard CDC miniature light traps that were baited with dry ice

as an attractant. The traps were tied to a tree outside the respective houses and operated

between 1800 hours and 0900 hours. Mosquitoes from each trap were transported live in cool

boxes, identified morphologically to species [28], and stored at -80˚C until further processing.

Midgut dissection, DNA extraction and 16S rRNA gene library

preparation

Individual female mosquitoes were surface sterilized as previously described [23] and dissected

in 50 μl of Dulbecco’s phosphate buffered saline (DPBS) solution (Thermo Fisher Scientific,

Waltham, MA). Total DNA was isolated from each midgut using QIAamp DNA mini kit (Qia-

gen, Valencia, CA). A portion of DNA from Culex mosquitoes was used for species identifica-

tion using real-time polymerase chain reaction [29]. In total, 264 midguts from 12 mosquito

species were processed (Table 1). The V3-V5 region of the 16S rRNA gene was amplified and

sequenced using Illumina MiSeq Bulk v3 platform at the W. M. Keck Center for Comparative

and Functional Genomics at the University of Illinois at Urbana-Champaign as previously

described [23]. The following primer set was used: forward 5´ -CCTACGGGAGGCAGCAG-

3‘and reverse 5‘-CCGTCAATTCMTTTRAGT-3´.

In brief, all DNA samples were measured on a Qubit (Life Technologies) using High Sensi-

tivity DNA Kit and diluted to 2 ng/μl. A master mix containing 0.5 μl -10X FastStart Reaction

Buffer without MgCl2, 0.9 μl -25 mM MgCl2, 0.25 μl -DMSO, 0.1 μl -10 mM PCR grade Nucle-

otide Mix, 0.05 μl -5 U/μl FastStart High Fidelity Enzyme Blend, 0.25 μl -20X Access Array

Loading Reagent, and 0.95 μl -water was prepared using the Roche High Fidelity Fast Start Kit

and 20X Access Array loading reagent and aliquoted into 48 well PCR plates along with 1 μl

DNA sample and 1 μl Fluidigm Illumina linkers (V3-V5-F357: ACACTGACGACATGGTTC

TACA and V3-V5-R926:TACGGTAGCAGAGACTTGGTCT) with unique barcode. In a sep-

arate plate, primer pairs were prepared and aliquoted. 20X primer solutions were prepared by

adding 2 μl of each forward and reverse primer, 5 μl of 20X Access Array Loading Reagent and

water to a final volume of 100 μl.

Microbiota of wild mosquitoes
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Four μl of sample was loaded in the sample inlets and 4 μl of primer loaded in primer inlets

of a previously primed Fluidigm 48.48 Access Array IFC. The IFC was placed in an AX control-

ler (Fluidigm Corp.) for microfluidic loading of all primer/sample combinations. Following the

loading stage, the IFC plate was loaded on the Fluidigm Biomark HD PCR machine and sam-

ples were amplified using the following Access Array cycling program without imaging: 50˚C

Fig 1. Map of the study area showing the location of the traps. S = trap site, S1 = 504 S Lynn St,

Champaign IL; S2 = 1509 Grandview Dr, Champaign IL; S3 = 408 W Maple St, Champaign IL; S4 = 1809

Grandview Dr, Champaign IL; S5 = 805 S. Prairie St, Champaign IL; S6 = 1116 Charles St, Champaign IL;

S7 = 604 W Hill St, Champaign IL; S8 = 1605 Coronado Dr, Champaign IL; S9 = 1413 S Western Ave,

Champaign IL; S10 = 909 S McKinley, Champaign IL; S11 = 1418 S Western Ave, Champaign IL; S12 = 409

W Hill St, Champaign IL; S13 = 705 W Kirby Ave, Champaign IL; S14 = 602 Nevada St, Urbana IL; S15 = 602

Vermont Ave, Urbana IL; S16 = 2402 E Elm St, Urbana IL; S17 = 804 W Main St, Urbana IL; S18 = 807 W

Main St, Urbana IL; S 19 = 2010 Morrow Ct, Urbana IL.

doi:10.1371/journal.pntd.0005377.g001

Table 1. Number of midgdut samples that were processed for each of the 12 mosquito species col-

lected in Urbana-Champaign, IL.

Number of midgut samples

Mosquito species Initial Final

Aedes albopictus 28 27

Aedes japonicus 28 21

Aedes triseriatus 28 23

Aedes trivittatus 28 18

Aedes vexans 27 27

Anopheles crucians 27 15

Anopheles punctipennis 27 14

Anopheles quadrimaculatus 27 15

Culex pipiens 16 15

Culex restuans 8 4

Culiseta inornata 11 10

Psorophora ferox 9 6

264 195

doi:10.1371/journal.pntd.0005377.t001
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for 2 minutes (1 cycle), 70˚C for 20 minutes (1 cycle), 95˚C for 10 minutes (1 cycle), followed by

10 cycles at 95˚C for 15 seconds, 60˚C for 30 seconds, and 72˚C for 1 minute, 2 cycles at 95˚C

for 15 seconds, 80˚C for 30 seconds, 60˚C for 30 seconds, and 72˚C for 1 minute, 8 cycles at

95˚C for 15 seconds, 60˚C for 30 seconds, and 72˚ for 1 minute, 2 cycles at 95˚C for 15 seconds,

80˚C for 30 seconds, 60˚C for 30 seconds, and 72˚C for 1 minute, 8 cycles at 95˚C for 15 sec-

onds, 60˚C for 30 seconds, and 72˚C for 1 minute, and 5 cycles at 95˚C for 15 seconds, 80˚C for

30 seconds, 60˚C for 30 seconds, and 72˚C for 1 minute. The PCR product was transferred to a

new 96 well plate, quantified on a Qubit fluorimeter (Thermo-Fisher) and stored at -20˚C. All

samples were run on a Fragment Analyzer (Advanced Analytics, Ames, IA) and amplicon

regions and expected sizes confirmed. Samples were then pooled in equal amounts according to

product concentration. The pooled products were size selected on a 2% agarose E-gel (Life

Technologies) and extracted from the isolated gel slice with QIAquick gel extraction kit (QIA-

GEN). Cleaned size selected products were run on an Agilent Bioanalyzer to confirm appropri-

ate profile and determination of average size. The final library pool was spiked with 10% non-

indexed PhiX control library (Illumina) and sequenced using Illumina MiSeq V3 Bulk system.

The libraries were sequenced from both ends of the molecules to a total read length of 300nt

from each end. Cluster density was 964k/mm2 with 85.9% of clusters passing filter.

OTU picking and taxonomy assignment

IM-TORNADO 2.0.3.2 platform was used to process the de-multiplexed fasq-formatted files

obtained from the sequencing facility. This platform is designed to process non-overlapping

reads for analysis as a whole unit without sacrificing one of the reads in the pair and improves

accuracy in read analysis compared to single-end read analysis [30]. The 5´ PCR primer for for-

ward (R1) and reverse (R2) reads were trimmed using Trimmomatic program [31] with the

parameter HEADCROP:17 for R1 read and HEADCROP: 18 for R2 read. The quality filtering

process was performed using Trimmomatic program following previously described procedures

with slight modifications [30]. Briefly, the sequences were subjected to a hard cutoff of PHRED

score Q3 for 5 ´ and 3´ ends of the reads (parameters LEADING: 3 and TRAILING: 3), trimming

of the 3’ end with a moving average score of Q15, with a window size of four bases (parameter

SLIDINGWINDOW: 4:15), and any reads with less than 150 base pairs removed with parameter

R1_TRIM = 150 and R2_TRIM = 150. Reads with ambiguous base calls were discarded. To retain

both reads while avoiding misinterpretation of the data, matching R1 and R2 reads were joined

using an ambiguous nucleotide character “N” between R1 and R2 [30]. In a single run, IM-TOR-

NADO generates outputs for R1 data only, R2 data only, and paired end data. Only output files

related to paired end data were used for taxonomic assignment and downstream analysis. Reads

were de-replicated building clusters of reads with 100% similarity and annotated with cluster size.

Singletons and reads shorter than the cutoff length were discarded to ensure the use of high qual-

ity reads when assigning OTU representation. Reads were sorted by cluster size and processed in

USEARCH using the UPARSE algorithm to find the OTU representatives using de novo OTU

picking strategy. Chimeric reads are also removed during this step resulting in a set of OTU rep-

resentatives of very high sequence quality [32]. Operational taxonomic units (OTUs) were

assigned at 97% sequence similarity using the Ribosomal Database Project (RDP) version 10 as

the reference set with a threshold of 80% bootstrap confidence [33].

PCR validation for Wolbachia surface antigen, wsp

Quantitative TaqMan real-time PCR (qPCR) was used to confirm the wsp gene of Wolbachia
in mosquito midgut samples using the following primer set: forward: 5’-GSTTTTGCTKRTCA

AGYAARAG-3’ and reverse: 5’-GYGCTGTAAAGAACKTTGWDY-3’ respectively. Taqman
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probe sequence was 5’ FAM-TGTTAGTTATGATGTAACTCCRGAA-IABFQ 3’. The primers

and probe were synthesized by Integrated DNA Technology, Inc. (IDT, Coralville, IA). Twenty

microliter qPCR contained 1× SensiFAST Probe Hi Rox mastermix (BioLine, Taunton, MA),

0.5 μM of each primer, 0.25 μM Taqman probe and 2 μL of the mosquito midgut DNA isolate.

The qPCR was run with 1 cycle of heat activation at 95˚C for 15 minutes followed by 45 cycles

of denaturation at 94˚C for 1 minute, annealing at 50˚C for 1 minute and elongation at 72˚C

for 1 minute.

Minigene was constructed using wsp gene segment flanked by the PCR primers and was

synthesized by IDT (Coralville, IA). The gene sequences utilized for the minigene were down-

loaded from GenBank and the accession number was CP001391 for Wolbachia spp wRi. The

minigene was used as a positive control for qPCR of Wolbachia wsp gene and as templates for

building a standard curve to estimate the quantity of wsp gene in mosquito midgut samples.

The copy number of minigene (2063 bp) containing wsp gene segment was calculated based

on the DNA concentration determined by NanoDrop 1000 spectrophotometer (Thermo Sci-

entific) and on the assumption that the average weight of a DNA base pair (bp) is 650 Daltons.

The formula for copy number calculation is: copy numbers = ((minigene amounts in ng) ×
(6.022 × 1023)) / (2063 × 650 × 109). The concentration of minigene solution was adjusted to

be 5 × 109 copies/μl and 10-fold serially diluted in nuclease free water (BioLine, Taunton,

MA). Two microliter of the serially diluted minigene solution was utilized for qPCR. A stan-

dard curve was generated using the relationship between the cycle numbers at threshold (Ct

values) and the minigene copy numbers in serially diluted minigene solution.

Statistical analysis

Unless otherwise stated statistical analysis were conducted using R 3.2.3 statistical software

(https://cran.r-project.org/bin/windows/base/old/3.2.3/). OTUs accounting for< 0.005% of the

total number of sequences were discarded before downstream analysis to reduce the problem of

spurious OTUs [34]. The number of sequences varied markedly among individual mosquito mid-

guts (mean ± SE = 6834.72 ± 460.75 per mosquito midgut; minimum = 0, maximum = 39,268).

We rarefied the read depth to 1,036 reads per sample to standardize the sampling effort. Sixty

nine samples that did not meet this criterion (i.e. had< 1,036 sequences) were excluded from

subsequent analysis (Table 1). Alpha diversity metrics including Shannon diversity index, ob-

served species, chao1, and evenness were generated in QIIME [35] and analysis of variance with

Tukey adjustments was used to test whether there were any significant differences in these indices

among mosquito species. Analysis of similarities (ANOSIM) using the “vegan” package in R was

used to test whether microbial communities from samples of each mosquito species were more

similar than those of different mosquito species [36]. The computed Bray-Curtis similarity matrix

values were used for principal coordinate analysis (PCoA) to determine microbial community

differences across mosquito species (“vegan” package in R). Hierarchical clusters based on Bray-

Curtis dissimilarity measure were performed in PAST software to highlight the differences in

mosquito samples based on the composition and abundance of their gut microbiota [37]. Similar-

ity percentage (SIMPER) analysis was used to identify OTUs that were primarily responsible for

observed differences between mosquito species (PAST version 3.14 software [37]).

Results

Bacterial species composition across mosquito species

MiSeq sequencing of the V3-V5 region of 16S rRNA gene amplicons from 264 mosquito sam-

ples generated a total of 1,804,366 sequences (Mean ± SE = 6834.72 ± 460.75 per mosquito

midgut sample). After quality filtering and rarefying the reads to an even sampling depth of

Microbiota of wild mosquitoes
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1,036 sequences, a total of 202,020 sequences from 195 mosquito samples were retained. These

sequences were clustered into 181 bacterial OTUs belonging to 11 phyla, 66 families and 111 gen-

era. Only 16 of the 181 OTUs had an overall abundance equal to or greater than 1%. The majority

of sequences were from Proteobacteria (81.1%) comprising of Alphaproteobacteria (47.4%), Gam-
maproteobacteria (29.2%), Betaproteobacteria (3.2%), Epsilonproteobacteria (1.1%), andDeltapro-
teobacteria (0.3%). Other observed phyla included, Actinobacteria (8.8%), Firmicutes (5.7%),

Bacteroidetes (1.8%), Acidobacteria (0.8%), Cyanobacteria (0.6%), Tenericutes (0.5%), Spirochaetes
(0.4%), Planctomycetes (0.3%), Parcubacteria (0.03%) and Fusobacteria (0.005%).

The most abundant OTUs were associated with the families Acetobacteraceae (25.7%),

Enterobacteriaceae (20.6%), Rickettsiaceae (20.0%), Propionibacteriaceae (8.4%), and Orbaceae
(4.2%) (S1 Fig). Acetobacteraceae occurred in high abundance among some individuals of all

mosquito species except An. crucians. However, they were found in fewer individuals of Ae.
albopictus, An. punctipennis, An. quadrimaculatus, Cx. pipiens and Cx. restuans compared to

the remaining mosquito species. Enterobacteriaceae was more common among Ae. triseriatus,
Ae. trivittatus, and Ae. vexans and also occurred in high abundance in the guts of a few individ-

uals of the remaining mosquito species. Rickettsiaceae was more abundant and widespread in

Ae. albopictus and Cx. pipiens and was also present in high abundance in a few samples of An.

crucians, An. punctipennis, and An. quadrimaculatus. Propionibacteriaceae were mostly associ-

ated with An. crucians and An. punctipennis and occurred in high abundance in a few individu-

als of Ae. triseriatus,Ae. vexans, An. quadrimaculatus, Cx. restuans, and Cs. inornata. Orbaceae
occurred in high abundance in a few individuals of An. crucians, An. punctipennis, An. quadri-
maculatus, Cs. inornata, Ps. ferox, Ae. japonicus and Ae. triseriatus. Overall, only 1–3 major fam-

ilies of bacteria tended to dominate the guts of the 12 mosquito species (S1 Fig). It was also

common for some individuals of a given mosquito species from the same study site and collec-

tion date to harbor different gut microbiota.

The top 9 OTUs accounted for 69.2% of the total sequences and their relative abundance

varied markedly between mosquito species (Fig 2). OTU 1 (Gluconobacter) accounted for

Fig 2. Mean relative abundances of bacterial OTUs associated with 12 species of mosquitoes at different

sites and collection dates. OTUs with abundance of less than 1.5% were pooled together as “Other”. S = trap site,

S1 = 504 S Lynn St, Champaign IL; S2 = 1509 Grandview Dr, Champaign IL; S3 = 408 W Maple St, Champaign IL;

S4 = 1809 Grandview Dr, Champaign IL; S5 = 805 S. Prairie St, Champaign IL; S6 = 1116 Charles St, Champaign IL;

S7 = 604 W Hill St, Champaign IL; S8 = 1605 Coronado Dr, Champaign IL; S9 = 1413 S Western Ave, Champaign IL;

S10 = 909 S McKinley, Champaign IL; S11 = 1418 S Western Ave, Champaign IL; S12 = 409 W Hill St, Champaign

IL; S13 = 705 W Kirby Ave, Champaign IL; S14 = 602 Nevada St, Urbana IL; S15 = 602 Vermont Ave, Urbana IL;

S16 = 2402 E Elm St, Urbana IL; S17 = 804 W Main St, Urbana IL; S18 = 807 W Main St, Urbana IL; S 19 = 2010

Morrow Ct, Urbana IL. T = date of collection; T1 = July, 2, 2015; T2 = July, 7, 2015; T3 = July, 21, 2015; T4 = July, 28,

2015; T5 = August, 3, 2015; T6 = August, 11, 2015; T7 = August, 19, 2015; T8 = August, 28, 2015; T9 = September,

4, 2015; and T10 = October, 15, 2015.

doi:10.1371/journal.pntd.0005377.g002
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23.1% of the total sequences and was more abundant in all Aedes mosquito species (except Ae.
albopictus) as well as Cs. inornata and Ps. ferox. This OTU also occurred in high abundance in

a few samples of Cx. pipiens, Cx. restuans, An. punctipennis, and An. quadrimaculatus. OTU 2

(Wolbachia) was more prevalent and abundant in the guts of Ae. albopictus and Cx. pipiens
and also occurred in three Ae. japonicus samples and one sample each of An. crucians, An.

punctipennis and An. quadrimaculatus. OTU 9 (Propionibacterium) was mostly associated with

An. crucians and An. punctipennis but it also occurred in higher abundance in a few samples of

other mosquito species. OTU 8 (Morganella) was mostly associated with Ae. triseriatus,Ae. tri-
vittatus, and Ae. vexans and OTU 5 (Providencia) was mostly associated with Ae. vexans. OTU

182 (Gluconobacter) was mostly associated with Ae. japonicus but was also present in high

abundance in the guts of some individuals of other mosquito species. OTU 6 (Orbus), OTU 86

(Pantoea), and OTU 12 (Tatumella) occurred in high abundance in one or a few individuals of

different mosquitoes (Fig 2). Some individuals of a given mosquito species also tended to differ

in their microbial composition despite being collected from the same study sites and collection

dates. The majority of mosquito samples were dominated by 1–2 OTUs.

Overall, 57.5% of bacterial OTUs were shared between at least two mosquito species (Fig 3).

However, only three bacterial OTUs occurred in all 12 mosquito species. These were OTU 1

(Gluconobacter), OTU 9 (Propionibacterium), and OTU 31 (Staphylococcus).

Diversity of mosquito microbiota

Shannon diversity indices revealed that on average, the gut microbiota of Aedes albopictus was

the least diverse and significantly less even compared to gut microbiota of An. crucians, An.

quadrimaculatus, Ae. triseriatus, Ae. vexans, Ae. japonicus, Cx. restuans, and Cs. inornata
(Shannon: F = 6.4, df = 11, 179, P< 0.001; Evenness: F = 6.4, df = 11, 179, P< 0.001; Table 2).

Fig 3. Number of OTUs that were unique to one mosquito species or shared between two or more

mosquito species. n = 181.

doi:10.1371/journal.pntd.0005377.g003
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The gut microbiota of An. crucians was also significantly more diverse and more evenly dis-

tributed compared to that of Ae. trivittatus, Cx. pipiens, and Ps. ferox (Table 2). We also calcu-

lated Chao1 estimator based on OTUs abundance to determine the expected richness in each

sample (Table 2). We were able to detect more than 93% ± 1.3% (mean ± SE) of the expected

number of OTUs suggesting that most OTUs were recovered. On average, our results revealed

that a mosquito midgut contains 5–10 bacterial OTUs (Table 2). The observed and predicted

(Chao1) number of OTUs were significantly lower in Ae. albopictus compared to Ae. vexans
(Observed OTUs: F = 3.2, 11, 179, P = 0.0005; Chao 1: F = 2.6, df = 11, 179, P = 0.005; Table 2).

Significantly more bacterial OTUs were also observed in An. crucians and Ae. triseriatus guts

compared to Ae. albopictus guts.

Variation in midgut bacterial communities across mosquito species

The ANOSIM analysis based on Bray-Curtis distances revealed a significant difference in

microbial communities among the 12 mosquito species (ANOSIM, R = 0.59, P = 0.001). To

better visualize the results, a principal coordinates analysis (PCoA) plot was generated based

on Bray-Curtis distances (Fig 4). Ordination based on this metric demonstrated a clear separa-

tion of Ae. albopictus and Cx. pipiens samples from the other mosquito species indicating that

the microbial communities of the two mosquito species differed from those of the other mos-

quito species (Fig 4). Cluster analysis based on Bray-Curtis distances confirmed that the

majority of Ae. albopictus and Cx. pipiens samples tended to cluster together and that it was

common for individuals of different mosquito species from different sites and collection dates

to harbor similar gut microbiota (S2 Fig).

The SIMPER analysis was used to identify the bacterial OTUs primarily responsible for

the observed separation of gut communities between mosquito species, using the relative

abundances of bacterial OTUs (S1 Table; S3 Fig). Twelve OTUs accounted for 69.8% of

observed differences between mosquito species with OTU 1 (19%), OTU 2 (18%) and OTU

9 (8%) accounting for the largest variation (S1 Table). OTU 1 (Gluconobacter), was found in

all mosquito species but was more abundant in Ae. japonicus, Ps. ferox, Ae. trivittatus, Ae.
triseriatus, and Cs. inornata (S3 Fig). OTU 2 (Wolbachia) was mainly associated with Ae.
albopictus and Cx. pipiens and OTU 9 (Propionibacterium) was mainly associated Cx. rest-
uans, Ae. triseriatus and the three Anopheles species (An. crucians, An. quadrimaculatus, An.

punctipennis, S3 Fig).

Table 2. Bacterial diversity and richness (mean ± SE) in the guts of 12 mosquito species.

Species Shannon diversity OTU evenness Observed OTUS Chao1

Anopheles crucians 1.87 ± 0.23 0.62 ± 0.06 8.00 ± 0.89 8.00 ± 0.89

Anopheles punctipennis 1.05 ± 0.15 0.39 ± 0.05 6.29 ± 0.57 7.04 ± 0.80

Anopheles quadrimaculatus 1.23 ± 0.20 0.45 ± 0.06 6.29 ± 0.53 6.82 ± 0.67

Aedes albopictus 0.36 ± 0.11 0.14 ± 0.03 4.50 ± 0.51 5.13 ± 0.67

Aedes japonicus 1.18 ± 0.17 0.43 ± 0.06 6.38 ± 0.47 7.14 ± 0.54

Aedes triseriatus 1.31 ± 0.15 0.45 ± 0.05 7.43 ± 0.68 8.41 ± 0.98

Aedes vexans 1.25 ± 0.11 0.41 ± 0.03 8.78 ± 0.88 9.82 ± 1.04

Aedes trivittatus 0.76 ± 0.12 0.31 ± 0.05 6.11 ± 0.50 6.58 ± 0.63

Culex pipiens 0.78 ± 0.15 0.29 ± 0.05 5.79 ± 0.59 6.18 ± 0.76

Culex restuans 1.61 ± 0.26 0.60 ± 0.09 6.50 ± 0.29 6.50 ± 0.29

Culiseta inornata 1.59 ± 0.33 0.54 ± 0.10 6.90 ± 0.99 7.15 ± 0.95

Psorophora ferox 0.65 ± 0.34 0.25 ± 0.10 5.83 ± 1.30 6.08 ± 1.37

doi:10.1371/journal.pntd.0005377.t002

Microbiota of wild mosquitoes

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0005377 February 28, 2017 9 / 18



Wolbachia prevalence and wsp gene copy numbers

Real-time qPCR results confirmed the presence of Wolbachia in all three Ae. japonicus sam-

ples, 25 of 27 Ae. albopictus samples, 12 of 15 Cx. pipiens samples, and the 1 An. punctipennis
sample (S4 Fig). None of the other mosquito species had Wolbachia. Wolbachia wsp gene copy

numbers ranged from 0 to 10151 and were relatively higher in Ae. albopictus compared to the

other mosquito species (S4 Fig).

Discussion

In this study we characterized and compared the midgut bacterial communities of 12 mosquito

species encompassing four mosquito genera, many of them important vectors of medical, vet-

erinary and wildlife significance. Overall, we found a low diversity of gut microbiota that was

characterized by large individual variability and the dominance of one or two bacterial OTUs.

Analysis of microbial composition revealed that the bacterial community in mosquito midguts

was dominated by a few phyla with only three phyla (Proteobacteria (81.1%), Actinobacteria
(8.8%) and Firmicutes (5.7%) accounting for 97% of the total sequences. These bacterial phyla

are commonly reported in the guts of mosquitoes and other insects [22, 24, 25, 38, 39]. The

Phylum Proteobacteria is highly diverse and contains a wide variety of species that are adapted

to a wide range of environments; thus it is no surprise that its dominance in mosquito midguts

is well established [22, 24, 25, 40, 41].

Individual variability in gut microbiota was not only restricted to mosquito samples collected

from different sites and different dates but was also common among individual mosquitoes col-

lected at the same sites and collection dates. Similar individual variability in gut microbiota and

the dominance of a few bacterial taxa in mosquito guts has been reported before [22]. These var-

iations may result from individual variations in external and internal factors such as the gut

physiological conditions, larval and adult diet, infection with parasites and pathogens, host

aging [24, 26, 27, 38, 42], and host genetic background [43]. Our experimental design cannot

decipher the contribution of these factors to the observed pattern of gut microbiota since adult

mosquito samples were collected using the CDC light traps and we had no prior knowledge of

the factors these mosquitoes were exposed to before collection. Individual variation in gut

Fig 4. Principal coordinates analysis (PCoA) comparing the bacterial communities across 12

mosquito species. PCoA was based on Bray-Curtis distance values computed for mosquito

communities at the 97% OTU level. CRU = An. crucians, PUN = An. punctipennis, QUA = An.

quadrimaculatus, ALB = Ae. albopictus, JAP = Ae. japonicus, TRIS = Ae. triseriatus, VEX = Ae. vexans,

TRIV = Ae. trivittatus, PIP = Cx. pipiens, RES = Cx. restuans, INO = Cs. inornata, FER = Ps. ferox.

doi:10.1371/journal.pntd.0005377.g004
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microbiota may be epidemiologically relevant since some bacterial species are known to

enhance [13, 44, 45] or reduce mosquito susceptibility to Plasmodium parasites and dengue

viruses [14, 46, 47]. Thus it is possible that differences in gut microbiota observed in this study

may be one of the primary factors contributing to individual variation in vector competence

that is commonly observed in nature. Future studies targeting the role of specific members of

this bacterial community on vector competence and other aspects of mosquito biology may pro-

vide important insights into their epidemiological significance.

Ae. albopictus and Cx. pipiens harbored distinct bacterial communities that was primarily

dominated by OTU 2 (Wolbachia). We also found Wolbachia sequences in three samples of

Ae. japonicus and one sample of An. crucians, An. quadrimaculatus, and An. punctipennis.
Real-time qPCR results confirmed the widespread occurrence of Wolbachia in Ae. albopictus
and Cx. pipiens samples as well as its presence in the 1 and 3 An. punctipennis and Ae. japonicus
samples that had Wolbachia sequences, respectively. We processed only intact mosquitoes and

sterilized their surfaces before dissecting their midguts to minimize the potential for contami-

nation. This process is expected to remove bacteria from the body surface but it is still possible

these mosquitoes were contaminated with Wolbachia from damaged Ae. albopictus and Cx.

pipiens samples either in the traps or during sorting and sample identification. However, the

dominance of Wolbachia sequences in one of An. punctipennis samples and three Ae. japonicus
samples is unlikely due to cross contamination and may imply that a few individuals of Ae.
japonicus and An. punctipennis may harbor Wolbachia endosymbionts. Wolbachia are a genus

of maternally-inherited bacterial endosymbionts that are estimated to occur in approximately

65% of insect species [48]. This bacterium acts as a reproductive parasite in arthropods; it

induces male killing, feminization, and cytoplasmic incompatibility which facilitate its spread

throughout the arthropod population [49]. Both Ae. albopictus and Cx. pipiens are known to

harbor Wolbachia endosymbionts [23, 38, 50–52] and our study suggest the need for detailed

investigations of Wolbachia infection to ascertain that its absence in other mosquito species as

reported in the past is not due to lack of adequate sampling effort. The mechanism underlying

the high Wolbachia infection and low diversity of midgut bacteria in Ae. albopictus is unclear

but could be due to methodological bias where the rarefaction depth of 1,036 employed in this

study may not have been sufficient to detect low abundance OTUs or due to Wolbachia inter-

acting negatively with other bacterial species. Additional studies are needed to develop a better

understanding of how Wolbachia interacts with other microbiota. Wolbachia has been shown

to inhibit transmission of mosquito-borne pathogens [53–55] and is currently under investiga-

tion for potential application in biological control of mosquitoes and associated pathogens

[56–58]. Unfortunately, Wolbachia can also enhance transmission of other pathogens such as

malaria and West Nile Virus [44, 45, 59]. These effects are dependent on Wolbachia strain and

the mosquito-borne pathogen under investigation as it is possible for some Wolbachia strains

to inhibit transmission of some pathogens while enhancing transmission of others [60, 61].

These findings reinforce the need to understand the potential impact ofWolbachia on different

mosquito-borne pathogens before large scale application of Wolbachia-based disease control

strategies.

SIMPER analyses indicated that OTU 1 (Gluconobacter), OTU 2 (Wolbachia), and OTU 9

(Propionibacterium) contributed most to the average dissimilarity between mosquito species.

OTU 1 (Gluconobacter) was found in all mosquito species but was strongly associated with Ae.
japonicus, Ae. triseriatus, Ae. vexans, Ae. trivittatus, Cs. inornata, and Ps. ferox. Gluconobacter
are acetic acid bacteria that are adapted to various sugar- and ethanol-rich environments [62].

These bacteria have been found in association with insects that rely on sugar-based diets

including mosquitoes [63, 64]. As an example, the genus Asaia (a member of Acetobactera-
ceae), are frequently found in the nectar of flowers e.g. [65–67] and have been shown to

Microbiota of wild mosquitoes
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establish symbiotic associations with mosquitoes [63, 64, 68, 69]. Propionibacterium was

mostly associated with Anopheles mosquitoes and Cx. restuans. Propionibacterium is a com-

mon bacteria of human skin and other animals [70–72] and has also been isolated in mosqui-

toes [73]. These bacteria may have been acquired from vertebrate hosts during a blood meal

[73]. Another notable OTU accounting for observed differences was OTU 5 (Providencia)

which was strongly associated with Ae. vexans. This bacterium is a common gastrointestinal

pathogen of humans and animals and also occurs in human and animal wastes [74]. It may

have been acquired through contact with blood meal hosts or during larval development. Fur-

ther studies are needed to investigate the potential role of these bacteria on mosquito biology

including susceptibility to pathogens.

In general, there were small differences in bacterial diversity and evenness between most

species of mosquitoes. However, the bacterial communities of Ae. albopictus were significantly

less diverse and less evenly distributed compared to those of An. crucians, An. quadrimacula-
tus, Ae. japonicus, Ae. triseriatus, Ae. vexans, Cx. restuans, or Cs. inornata. Similar bacterial

diversity and evenness between mosquito species across the four mosquito genera suggest that

the mosquito midgut likely plays an active role in regulating the colonization and assembly of

bacterial communities. Lower microbial diversity in Ae. albopictus relative to the seven mos-

quito species may be due to inability of some bacterial taxa to proliferate in the guts of Ae. albo-
pictus either due to species differences in gut physiological conditions [75] and/or modulation

of microbial communities by the mosquito innate immune system [12]. The physical presence

of some bacterial taxa or other microbes (e.g. fungi) also may render the mosquito midgut

uninhabitable to other bacterial taxa due to interspecific competition for resources and/or pro-

duction of toxins and inhibitory factors. Differences in food sources also may partly account

for the observed differences because although all mosquito species tend to feed on microbes as

larvae and blood and nectar as adults, different mosquito species portray marked variations in

their preferred larval habitats and sugar and blood meal hosts which may pre-expose them to

different microorganisms. In addition, sugar feeding and blood feeding can reduce the diver-

sity of gut bacteria in mosquitoes [24]. Although we purposefully selected individuals that

were not engorged with blood for microbiome analysis, we could not establish whether our

mosquito samples had prior access to a blood meal or a sugar meal. It is possible that the

majority of Ae. albopictus that were analyzed in this study had acquired a blood meal and/or a

sugar meal leading to major reductions in bacterial diversity.

In summary, our study has characterized the midgut bacterial communities of 12 of the

most common mosquito species in the United States, expanding current knowledge on mos-

quito species whose gut microbes have been studied. We found significant differences in gut

microbial composition between some mosquito species and documented marked variation in

gut microbiota between individuals of the same mosquito species. The 12 mosquito species

included the known vectors of arboviruses of global public health significance such as dengue,

chikungunya, Zika, West Nile virus, and La Crosse virus encephalitis. Given the well-docu-

mented ability of midgut microbiota to influence vector susceptibility to pathogens [12, 14–16,

25, 46], our results provide critical knowledge that can inspire further studies to determine

which of the identified microbial communities could be exploited for disease control.

Supporting information

S1 Fig. Mean relative abundances of bacterial families associated with 12 species of mos-

quitoes at different sites and collection dates. Families with abundance of less than 1.2%

were pooled together as “Other”. S = trap site, S1 = 504 S Lynn St, Champaign IL; S2 = 1509

Grandview Dr, Champaign IL; S3 = 408 W Maple St, Champaign IL; S4 = 1809 Grandview Dr,
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Champaign IL; S5 = 805 S. Prairie St, Champaign IL; S6 = 1116 Charles St, Champaign IL;

S7 = 604 W Hill St, Champaign IL; S8 = 1605 Coronado Dr, Champaign IL; S9 = 1413 S West-

ern Ave, Champaign IL; S10 = 909 S McKinley, Champaign IL; S11 = 1418 S Western Ave,

Champaign IL; S12 = 409 W Hill St, Champaign IL; S13 = 705 W Kirby Ave, Champaign IL;

S14 = 602 Nevada St, Urbana IL; S15 = 602 Vermont Ave, Urbana IL; S16 = 2402 E Elm St,

Urbana IL; S17 = 804 W Main St, Urbana IL; S18 = 807 W Main St, Urbana IL; S 19 = 2010

Morrow Ct, Urbana IL. T = date of collection; T1 = July, 2, 2015; T2 = July, 7, 2015; T3 = July,

21, 2015; T4 = July, 28, 2015; T5 = August, 3, 2015; T6 = August, 11, 2015; T7 = August, 19,

2015; T8 = August, 28, 2015; T9 = September, 4, 2015; and T10 = October, 15, 2015.

(TIFF)

S2 Fig. Clustering based on taxon composition and abundance of gut microbiota of all

mosquito samples. CRU = An. crucians, PUN = An. punctipennis, QUA = An. quadrimaculatus,
ALB = Ae. albopictus, JAP = Ae. japonicus, TRIS = Ae. triseriatus, VEX = Ae. vexans, TRIV = Ae.
trivittatus, PIP = Cx. pipiens, RES = Cx. restuans, INO = Cs. inornata, FER = Ps. ferox. S = trap

site, S1 = 504 S Lynn St, Champaign IL; S2 = 1509 Grandview Dr, Champaign IL; S3 = 408 W

Maple St, Champaign IL; S4 = 1809 Grandview Dr, Champaign IL; S5 = 805 S. Prairie St, Cham-

paign IL; S6 = 1116 Charles St, Champaign IL; S7 = 604 W Hill St, Champaign IL; S8 = 1605

Coronado Dr, Champaign IL; S9 = 1413 S Western Ave, Champaign IL; S10 = 909 S McKinley,

Champaign IL; S11 = 1418 S Western Ave, Champaign IL; S12 = 409 W Hill St, Champaign IL;

S13 = 705 W Kirby Ave, Champaign IL; S14 = 602 Nevada St, Urbana IL; S15 = 602 Vermont

Ave, Urbana IL; S16 = 2402 E Elm St, Urbana IL; S17 = 804 W Main St, Urbana IL; S18 = 807 W

Main St, Urbana IL; S 19 = 2010 Morrow Ct, Urbana IL. T = date of collection; T1 = July, 2,

2015; T2 = July, 7, 2015; T3 = July, 21, 2015; T4 = July, 28, 2015; T5 = August, 3, 2015;

T6 = August, 11, 2015; T7 = August, 19, 2015; T8 = August, 28, 2015; T9 = September, 4, 2015;

and T10 = October, 15, 2015.

(TIF)

S3 Fig. Principal OTUs responsible for observed differences in bacterial community struc-

ture between mosquito species. CRU = An. crucians, PUN = An. punctipennis, QUA = An.

quadrimaculatus, ALB = Ae. albopictus, JAP = Ae. japonicus, TRIS = Ae. triseriatus, VEX = Ae.
vexans, TRIV = Ae. trivittatus, PIP = Cx. pipiens, RES = Cx. restuans, INO = Cs. inornata, FER =

Ps. ferox. Number at the end of the genus name is the OTU number. Values in the heatmap cells

represent the relative abundance of respective OTUs in different mosquito species.

(TIF)

S4 Fig. qPCR results of Wolbachia wsp copy numbers in Aedes albopictus, Ae. japonicus,

Anopheles crucians, An. punctipennis, An. quadrimaculatus, and Culex pipiens. S = trap site,

S1 = 504 S Lynn St, Champaign IL; S2 = 1509 Grandview Dr, Champaign IL; S3 = 408 W Maple

St, Champaign IL; S4 = 1809 Grandview Dr, Champaign IL; S5 = 805 S. Prairie St, Champaign

IL; S6 = 1116 Charles St, Champaign IL; S7 = 604 W Hill St, Champaign IL; S8 = 1605 Coro-

nado Dr, Champaign IL; S9 = 1413 S Western Ave, Champaign IL; S10 = 909 S McKinley,

Champaign IL; S11 = 1418 S Western Ave, Champaign IL; S12 = 409 W Hill St, Champaign IL;

S13 = 705 W Kirby Ave, Champaign IL; S14 = 602 Nevada St, Urbana IL; S15 = 602 Vermont

Ave, Urbana IL; S16 = 2402 E Elm St, Urbana IL; S17 = 804 W Main St, Urbana IL; S18 = 807

W Main St, Urbana IL; S 19 = 2010 Morrow Ct, Urbana IL. T = date of collection; T1 = July, 2,

2015; T2 = July, 7, 2015; T3 = July, 21, 2015; T4 = July, 28, 2015; T5 = August, 3, 2015; T6 =

August, 11, 2015; T7 = August, 19, 2015; T8 = August, 28, 2015; T9 = September, 4, 2015; and

T10 = October, 15, 2015.

(TIF)
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S1 Table. SIMPER analysis showing the major OTUs contributing to group differences.
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